Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

1. Ubung:

e HOME-Verzeichnis: echo $HOME oder cd home (cd ~) und dann pwd
¢ Alle Dateien anzeigen: 1s -a

1. find -name ’'*a*’ -print

2. find -name ’'s[aeioul]l *’ -print
3. find -name ’'*[a-d].h’ -print
4. find -name ’*r*[a-d].h’ -print

els > $HOME/lsbin

1.1s -R > out.s 2> out.e
2.1ls -R > out.se 2>> out.se
3.1s -R > out 2> out

Erstellt fir Geschlossene Gesellschaft Seite 1

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

Unterschied: Reihenfolge der Fehlermeldungen.

2. Ubung:

l.ps -ur

2. ps -1 (Size = maximal erforderlicher Speicher, Resident Set Size (RSS) =
aktuell belegter Speicher

3. Baumansicht in kpm

Erstellt fir Geschlossene Gesellschaft Seite 2

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

#finfo von Patrick Lipinski
#!/bin/bash

#Mehr als ein Parameter?
if test S# -ne 1
then
echo "Aufruf: finfo <Pfad/Datei> (Genau ein
Parameter) "
exit 1

#Existiert die Datei?
elif ! test -e $1
then
echo "Datei existiert nicht"

Erstellt fir Geschlossene Gesellschaft Seite 3

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

exit 2

#Ist es eine gewdhnliche Datei?
elif ! test -f $1

then
echo "keine gewdhnliche Datei™
exit 3

fi

#Informationsverarbeitung und Ausgabe der Informationen,
wenn

#es vorher keinen Fehler gab.

ls -1 --time-style="+%d.%m.%y" $1 > finfo tmp 2>
/dev/null

read rec zl bes gru gro let d let m let y dat < finfo tmp
e cho L L n

echo "Datei: Sdat"

echo "Rechte: S$Srec"

echo "Groesse: $gro byte"

echo "Besitzer: Sbes"

echo "Gruppe: S$gru"

echo "letzte Anderung: Slet d slet m S$let y"

echo "-------"“"-"-“"“"“"“““ -~ - "

rm finfo tmp

exit 0O

3. Ubung:

alias dir='1ls -1la’
alias copy=cp
alias del="rm -i’
alias MD=mkdir
alias rd=rmdir
alias move=mv

Speicherung der Befehle in der .bashrc und neustarten der Shell oder
Speichern in doshabbits und die Datei mit . doshabbits aufrufen.

Erstellt fir Geschlossene Gesellschaft Seite 4

©

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

1. Voreinstellung der Zugriffsrechte einer neuen Datei. Dabei sind die

2.
3.

4.

Ubergebenen Parameter genau umgekehrt, wie man es erwarten wirde:
umask 077 gibt dem User volle Rechte, der Gruppe und den anderen
aber nicht. Nur umask gibt die aktuelle Einstellung aus.

Kurze Erlauterung zu der Zahl: Das ist eine Oktalzahl, die binar
umgeschrieben die Rechte einer Datei angibt. Eine Datei kann die Rechte
rwx rwx rwx haben. Die ersten drei Zeichen stehen fur den User, die
zweiten drei Zeichen fur die Gruppe des Users und die dritten drei
Zeichen fir alle anderen. 111 111 111 bedeutet also volle Rechte fur alle,
in oktaler Schreibweise ist das 777.

umask 000 = rw- rw- rw-
umask 077 = rw- --- ---
umask 022 =» rw- r-- r--
umask 777 = --- --- ---

umask 077, touch neue testdatei

chmod g+r neue_ testdateil

Der Gruppe wird das Recht r(ead) gegeben.

chown kann nur der root ausfiihren. chown steht fir ,Change Owner*.

Erstellt fir Geschlossene Gesellschaft Seite 5

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

#!/bin/bash

solange die Eingabe nicht ende ist, weitermachen.
while ["$Sa" != "ende"] ;
do

echo "Bitte Kommando eingeben: "

b ist das Rechenzeichen

read a b c

case "sb" in

+) (("result=a + c"))
echo "$Sa + $Sc = Sresult"
continue

I

-) (("result=a - c¢"))
echo "$Sa - $Sc = Sresult"
continue

I

* gilt eigentlich als Ersatzzeichen flr alle anderen
Zeichen, so dass es hier mit dem \ maskiert werden muss.
*) (("result=a * c"))

echo "$Sa * Sc = Sresult"

continue

I

/) (("result=a/c"))
echo "$a / $c = Sresult"
continue

I

nn)if [||$a|| = "ende"]

then
exit 0

fi

*) echo "falsche Eingabe"
exit 1

esac

done

Alternative Moglichkeit mit , let”:

#!/bin/bash

Erstellt fir Geschlossene Gesellschaft Seite 6

Betriebssysteme Labor — Prof. Kremer — SS05

13.07.05: Musterlésungen Patrick Lipinski
clear

while ["Sa" != "ende"] ;

do

echo -n "Bitte Term eingeben: "
read a x b

case "$x" in

+) let "erg=a + b"
echo "sa + $b = Serg"
continue

1

-) let "erg=a - b"
echo "sa - $b = Serg"

continue

*) let "erg=a * b"
echo "sa * $b = Serg"
continue

/) let "erg=a/b"
echo "sa / $b = Serg"
continue

nn) if [||$a|| - ||ende||]
then
continue
fi

*) echo "falsche Eingabe"
exit 1

esac

done

echo "Taschenrechner beendet"

clear

exit O

Erstellt fir Geschlossene Gesellschaft Seite 7

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen

Patrick Lipinski

Ubung 4:

#!/bin/bash
clear

#Papierkorb schon vorhanden?
if ! test -e ~/papierkorb
then
mkdir ~/papierkorb
#alternativ auch moeglich ist S$HOME/.papierkorb
fi

#Datei zum Loeschen vorhanden?

if ! test -e S$1
then echo "Es existiert keine Datei™
exit O

fi

#Ordner?

if ! test -f $1

then echo "Diese Datei ist keine ASCII Datei™
exit 1

fi

#Schreibrechte?

if ! test -w $1
then echo "Diese Datei ist nicht schreibbar"
exit 3

fi

#Leserechte?

Erstellt fir Geschlossene Gesellschaft

Seite 8

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

if ! test -r S$1
then echo "Diese Datei ist nicht lesbar"
exit 4

fi

#liefert Verzeichnisstruktur und speichert in temp-Datei
dirname $1 > templ

#liefert Dateinamen und speichert in temp-Datei
basename $1 > temp2

read verzeichnis < templ
read datei < temp2

#Abfrage, ob gleichnamige Datei schon im Papierkorb vorhanden
if test -e ~/papierkorb/S$datei
then echo "Diese Datei besteht bereits in Papierkorb™"
exit 5
fi

#Datei wird in den Papierkorb verschoben
mv $1 ~/papierkorb/$Sdatei
rm templ; rm temp2

echo "Datei $1 wurde in den Papierkorb verschoben!"

exit O

Erstellt fir Geschlossene Gesellschaft Seite 9

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

#!/bin/bash
clear

Ueberprueft, ob Datei im Papierkorb ueberhaupt vorhanden

ist
if ! test -e ~/papierkorb/s$1
then
echo "Datei besteht nicht!"
exit 1
fi

-1 fragt nach, ob Datei ueberschrieben werden soll
-v zeigt an, welche Aktion durchgefuehrt wurde

#mv -iv ~/papierkorb/$1 ~/

mv -iv ~/papierkorb/S$1 ./

exit 0

Erstellt fir Geschlossene Gesellschaft Seite 10

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

Ubung 5:

#!/bin/bash

#Test auf Existenz des Verzeichnisses

if ! test -e $1

then
echo "Verzeichnis existiert nicht!"
exit 1

fi

#Endlosschleife
while true
do
#finde alle Dateien und speichere ihre Namen in $Datei
(Ein Namen pro Schleifendurchlauf)
for Datei in “find $1 -name "*" -print 2>/dev/null”
do
echo "$Datei" > bkdaemon tmp

#Wenn es schon ein Backup gibt oder die Datei
selbst

#ein Backup ist, gehe zur naechsten Datei

if grep .bak bkdaemon tmp 2>/dev/null >/dev/null

|| cmp -s $Datei $Datei.bak

then
continue
fi

Erstellt fUr Geschlossene Gesellschaft Seite 11

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

#Existenz wird ueberprueft
if [-f sDatei]
then
cp $Datei $Datei.bak
fi
done
rm bkdaemon tmp
sleep 5
#Ist die Sleepzeit abgelaufen, so beginnt die Endlosschleife
von vorne.
done
exit 0

#!/bin/bash

#Die Userdatei wird zeilenweise Uber eine pipe in eine
while-#Schleife geleitet
sort /etc/passwd | while read Kennung REST
do
#Nur der Username wird aus der Passwd genommen
#das set trennt die Variable $Kennung an jedem
#Doppelpunkt, die einzelnen Elemente stehen dann in
S1, #$2 usw.
IFS=:
set S$SKennung

#Anzahl aller Prozesse: Ausgabe aller Prozesse, suche
#nach jeder Zeile mit dem aktuellen User und zahlung
der #Zeilen

Erstellt fir Geschlossene Gesellschaft Seite 12

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

prozesse="ps aux|grep $1 2>/dev/null|wc -1°
((count += 1))
#Alternativ let count = count + 1
#Unterscheidung zwischen an- und abgemeldeten Usern.
Zu #beachten ist, dass der angemeldete Username nur 8
#Zeichen lang sein darf.
if who | grep $1 >/dev/null 2>/dev/null
then
echo $count\) $1 ist angemeldet, Sprozesse
Prozess\ (e\)
else
echo $count\) $1 ist abgemeldet, S$Sprozesse
Prozess\ (e\)
fi
done
exit O

Ubung 6:

/* umgebungsvariable.c - Ubung 6, Aufgabe 1la) */
/* Ausgabe des Inhalts einer Umgebungsvariablen */

#include <stdio.h>
#include <stdlib.h>

main (int argc, char *argv([], char *envp[]) {
char *inhalt;
/* *vname ist der Zeiger auf PWD, vname dann
der Inhalt von PWD*/
char *vname="PWD";
/* getenv liefert den Wert der Variable */

inhalt = getenv (vname) ;
if (inhalt != NULL) printf ("$s\n", inhalt);

/* argumentenliste.c - Ubung 6, Aufg. 1b) */
/* Ausgabe aller Aufrufparameter und Umgebungsvariablen

*/

#include <stdio.h>

Erstellt fir Geschlossene Gesellschaft Seite 13

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

main (int argc, char *argv[], char *envp[]){
int 1i;
int x=0;
printf ("Argumenten-Liste (Anfang)\n") ;
for (i=0; i < argc; i++) {
}

printf ("%$i. Aufrufparameter: %s\n", i, argvl([il);
printf ("Argumenten-Liste (Ende)\n\n") ;

printf ("Umgebungsvariablen-Liste (Anfang) \n");

while (*envp != NULL) {
printf ("%$i. Umgebungsvariable: %s\n", x++
, ¥envp++) ;

}

printf ("Umgebungsvariablen-Liste (Ende) \n");

#include <stdio.h>
#include <stdlib.h>

main (void) {

int rc;
char command[1024] ;

printf ("Kommando eingeben: ") ;
scanf ("%$s", command) ;

rc=system(command) ;

if (rc != 0){
printf ("\nKommando fehlgeschlagen! rc = %d\n",
rc) ;

}

Erstellt fUr Geschlossene Gesellschaft Seite 14

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

#include <stdio.h>
#include <sys/param.h>
#include <unistd.hs>

main (void) {

char dir [MAXPATHLEN], subdir [MAXPATHLEN] ;

if (getcwd(dir, MAXPATHLEN) == NULL){
perror ("getcwd error") ;
exit (1) ;
}
elsef
printf ("Aktuelles Arbeitsverzeichnis: %s\n",
dir) ;

}

printf ("Verzeichnis wechseln: ") ;
scanf ("%$s", subdir);

if (chdir (subdir) == -1){
perror ("Falsches Verzeichnis!!");
}

if (getcwd (dir, MAXPATHLEN) == NULL){
perror ("getcwd error") ;
exit (1) ;
}
else{
printf ("Aktuelles Arbeitsverzeichnis: %s\n",
dir) ;

}

Erstellt fir Geschlossene Gesellschaft Seite 15

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterldsungen Patrick Lipinski

/* waise.c - Ubung 6, Aufg.2 */
/* Erzeugung eines Waisen-Prozesses, der
von init adoptiert wird */

#include <stdio.h>

int main(void) {
int pid;

/* Beim ersten Aufruf wird nur der erste Zweig
der if-Bedingung ausgefihrt, dabei wird der
Kindprozess gestartet, der nur den zweiten Teil
des Zweiges ausfihrt (Da Returncode von fork im
Kindprozess = 0)

Der Elternprozess beendet sich, der Kindprozess
steckt in der while-Schleife fest und wird zur
Waise. */

if ((pid=fork())!=0) {
printf ("Elternprozess erzeugte PID %d\n", pid);
}

else {
while (1) {
sleep (4);
printf ("Elternprozess hat PID %d \n",
getppid()) ;

}
}

/* zombie.c - Aebung 6, Aufg. 3 */
/* Erzeugung eines Zombie-Prozesses */

#include <stdio.h>

int main(void) {
int pid;

/* Beim ersten Aufruf wird nur der erste Zweig
der if-Bedingung ausgefthrt, dabei wird der
Kindprozess gestartet, der nur den zweiten Teil
des Zweiges ausfihrt (Da Returncode von fork

im Kindprozess = 0)

Der Kindprozess beendet sich, der Elternprozess
steckt in der while-Schleife fest und fragt nie

Erstellt fir Geschlossene Gesellschaft Seite 16

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

den exit-code des Kindprozesses ab. Der Kindprozess
wird zum Zombie in der Prozesstabelle, der sich mit
kill nicht beenden lasst. */

if ((pid=fork())!=0) { /*Elternprozess */
printf ("Kindprozess: PID %d\n", pid);
while (1) sleep(10);
}
else { /*Kindprozess*/
printf ("Elternprozess: PPID %d\n", getppid()) ;
}

/* warten.c - Ubung 6, Aufg. 4 */
/* Erzeugung eines Elternprozesses, der auf den
Kindprozess wartet */

#include <stdio.h>
#include <stdlib.hs>
#include <sys/types.h>
#include <sys/wait.h>

int main(void) {
int i, pid, exit status;
if ((pid=fork())!=0) { /*Elternteil*/

/* Arbeit des Elternteils */

printf ("Elternteil arbeitet...\n");
sleep(2);

printf ("Elternteil fertig, warten auf
Kind...\n");

/* Warten auf Ende des Kindteils */
if (wait (&exit status)==pid)
printf ("Elternprozess sagt: Kindprozess mit %d
beendet\n",
WEXITSTATUS (exit status)) ;

}

else { /*Kindprozess*/

/* Arbeit des Kindteils */

sleep (1) ;

printf ("Kindteil arbeitet...\n");
sleep(3);

printf ("Kindteil fertig!\n");

Erstellt fir Geschlossene Gesellschaft Seite 17

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

/* Ende des Kindteils */
exit (0) ;

/* exec menu.c - Ubung 6, Aufg. 5 */
/* Einfaches MenU mit exec */

#include <stdio.h>

int main(void) {
char *kommando([] = {"who", "ls", "date", "xxx"};
int i;

printf ("0=who, 1=1s, 2=date, 3=xxx\n") ;
scanf ("%d", &i);

/* Programm wird bei Falscheingabe verlassen */

if (1 > 3 || i < 0) {
printf ("Falsche Eingabe\n") ;
exit (1) ;

}

/* Uberlagerung des Prozesses "exec menu" mit dem
Shell-kommando */
execlp (kommando[i], kommandol[i], 0);

/* Falls es den Shell-Befehl nicht gibt, wird der
Prozess nicht lUberlagert und die Fehlermeldung kann
ausgegeben werden*/

printf ("Kommando nicht gefunden.\n");

/* efw menu.c - Ubung 6, Aufg. 6 */
/* Erzeugung einer kleinen Menu-Shell */

Erstellt fir Geschlossene Gesellschaft Seite 18

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

#include <stdio.h>
#include <sys/wait.h>

int main(void) {
char *kommando([] = {"who", "ls", "date", "xxx"};
int i, rc;

while (1) {
printf ("0=who, 1=1s, 2=date, 3=xxx, 4=Ende\n");
scanf ("%d", &i);

if (i==4) {
printf ("Ende.\n") ;
exit (0) ;
} else if (1 > 4 || i< 0) {
/* MenU-Shell wird bei Falscheingabe verlassen
*
/
printf ("Falsche Eingabe\n") ;
exit (1) ;

if (fork()==0) { /*Kindprozess */
/* Kindprozess fuhrt Kommando aus */

/* Uberlagerung des Prozesses "exec menu" mit
dem

Shell-kommando */

execlp (kommando [i], kommando[i], O0);

/* Falls es den Shell-Befehl nicht gibt, wird
der

Prozess nicht Uberlagert und die Fehlermeldung
kann ausgegeben werden*/

printf ("Kommando nicht gefunden.\n") ;

exit (1) ;

} else { /* Elternprozess */
/* Elternprozess wartet auf Kindprozess */
wait (&rc) ;

printf ("Kind mit %d beendet \n",

WEXITSTATUS (rc)) ;

Erstellt fir Geschlossene Gesellschaft Seite 19

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

#include <stdio.h>
#include <sys/signal.h>

void sig handler (int sig) {
printf ("Signal %d empfangen\n", sig);
if (sig == SIGQUIT)

signal (SIGQUIT, SIG_IGN) ;

signal (SIGINT, sig handler) ;
} else if (sig == SIGINT) {

signal (SIGINT, SIG IGN) ;

signal (SIGQUIT, sig handler) ;

}

int main(void) {
int 1=0;
signal (SIGQUIT, sig handler) ;
signal (SIGINT, sig handler) ;
while (1) {
printf ("working... %d\n",i++);
sleep(3);

Ubung 7:

Erstellt fir Geschlossene Gesellschaft Seite 20

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

strace -t -f -p <PID>

Zuerst muss die Shell gestartet werden, dann wird der obige Befehl in einem
anderen Bash-Fenster ausgefuhrt. -t gibt die Zeit mit aus, - £ folgt
Kindprozessen und -p <PID> gibt die PID an, die strace tberwachen soll.

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

#define BUFLEN 512
static const char *progname = "shell";

static void write prompt () {

Erstellt fUr Geschlossene Gesellschaft Seite 21

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

fprintf (stdout, "%s> ", progname) ;

}

static char* next token(char **sg) {
char *token, *p;

for (p = *s; *p && isspace (*p); p++) {
*p - I\Ol;
)

token = p;

for (; *p && !isspace(*p); p++) ;

for (; *p && isspace (*p); p++)
*p = '\0';

}

*S=p;
return token;

}

static void read command(char **cmd, char ***args) {
static char line [BUFLEN] ;
static char* argv [BUFLEN] ;
char *p;
int 1i;

memset ((char *) argv, 0, sizeof (argv));
p = fgets(line, sizeof(line), stdin);

for (i = 0; p && *p; i++) {

argv[i] = next token(&p) ;
}
*cmd = argv[0];
*args = argv;

int main(int argc, char **argv) {

pid t pid, bg pid;

int status, cnt, 1i,3;

char *cmd; // String

char **args; // String-Array

while (1) {
write prompt () ;
read command (&cmd, &args) ;

Erstellt fUr Geschlossene Gesellschaft Seite 22

Betriebssysteme Labor — Prof. Kremer — SS05

13.07.05: Musterlésungen Patrick Lipinski
if (cmd == NULL || strcmp(cmd, "exit") == 0) ({
break;
}
if (strlen(cmd) == 0) {
continue;

}

pid = fork();

if (pid == -1) {
perror (progname) ;
continue;
}
if (pid == 0) {
cnt=0;
/* Ermittlung der Lange des Argumenten-Arrays
*
/
while (args([cnt]!=(NULL)) {cnt++;}
/* Wenn das letzte Zeichen ein & ist -»>
Hintergrundprozess */
if (strcmp(args[cnt-1], "&") == 0) {
/* Kopie des aktuellen Prozesses */
bg pid = fork();
if (bg pid!=0) {
/*Elternprozess endet sofort */
exit (0) ;
} else {
/* Kindprozess ldoscht das & und
startet,
* da der Elternprozess schon beendet
ist,
* wird das Kind zur Waise und wird
von
* init adoptiert. Somit lauft das
* Programm unabhangig von der Shell
*
/
args [cnt-1] = NULL;
execvp (cmd, args) ;
perror (progname) ;
exit (1) ;
}
}
execvp (cmd, args);
perror (progname) ;
exit (1) ;
} else {

waitpid(pid, &status, 0);

}

Erstellt fir Geschlossene Gesellschaft Seite 23

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

return O0;

}

Endlosschleife zum Testen:
#include <stdio.h>

int main(void) {
int 1=0;
while (1) {
printf ("working... %d\n",i++);
sleep(2) ;
}
.
Ubung 8:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/errno.h>
#include <fcntl.h>

#define MAXBUFF 1024

void client (readfd, writefd) {

Erstellt fUr Geschlossene Gesellschaft Seite 24

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

char buff [MAXBUFF] ;
int n;

printf ("Dateiname eingeben: ") ;

if (fgets(buff, MAXBUFF, stdin) == NULL) {
fprintf (stderr, "client: Fehler beim Einlesen");
return;

}

n = strlen(buff) ;

if (buff[n-1] == '\n') n--;

write (writefd, buff, n);

while ((n = read(readfd, buff, MAXBUFF)) > 0)
write(1l, buff, n);
if (n < 0) {
fprintf (stderr, "client: Datenlesefehler");
}

}

void server (int readfd, int writefd) {
char buff [MAXBUFF] ;
char errmsg[256] ;
int n, £fd;
extern int errno;

if ((n = read(readfd, buff, MAXBUFF)) <= 0) {
fprintf (stderr, "Server: Dateiname Lesefehler");
return;

}

buff [n]="\0";

if ((fd = open(buff, 0)) < 0) {

sprintf (errmsg, "Server: Offnen fehlgeschlagen:
$s\n",

Erstellt fir Geschlossene Gesellschaft Seite 25

©

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen

Patrick Lipinski

buff) ;
write (writefd,
} else {

errmsg,

while ((n = read(fd, buff,
write (writefd, buff,
(n < 0)

fprintf (stderr,

n) ;
if
"Server:

)

int main(void) {

n))

strlen (errmsg)) ;

> 0)

Lesefehler") ;

int childpid, pipell2], pipe2([2];

if (pipe(pipel) < 0 || pipe(pipe2) < 0) {

fprintf (stderr,

exit (1) ;

}

if ((childpid = fork()) < 0) {
fprintf (stderr, "fork()
exit (2) ;

} else if (childpid > 0) {
close (pipel [0]) ;
close (pipe2[1]) ;
client (pipe2[0]
while (wait (0)
close (pipel[1]
close (pipe2[0]
exit (0) ;
} else {
close (pipel[1])
close (pipe2[0]) ;
server (pipel [0],
1)
1)

, pipelll]);
!= childpid) ;
) i
)i

A

pipe2[1]1);

close (pipel [0]) ;
close (pipe2[1

exit (0) ;

r

Header:

"Pipes konnen nicht gedffnet

werden.") ;

fehlgeschlagen") ;

Erstellt fir Geschlossene Gesellschaft

Seite 26

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/errno.h>
#include <fcntl.hs
extern int errno;

#define FIFO1 "/tmp/fifo.1"
#define FIFO2 "/tmp/fifo.2"
#define PERMS 0666

#define MAXBUFF 1024

Server:
#include "header.h"

void server (int readfd, int writefd) {
char buff [MAXBUFF] ;
char errmsg[256] ;
int n, £fd;
extern int errno;

if ((n = read(readfd, buff, MAXBUFF)) <= 0) {
fprintf (stderr, "Server: Dateiname Lesefehler");
return;

}

buff [n]="\0";

if ((fd = open(buff, 0)) < 0) {

sprintf (errmsg, "Server: Kann Datei nicht 6ffnen:

$s\n",
buff) ;
write (writefd, errmsg, strlen(errmsg)) ;
} else {

while ((n = read(fd, buff, MAXBUFF)) > 0)
write (writefd, buff, n);

if (n < 0)
fprintf (stderr, "Server: Lesefehler");

Erstellt fUr Geschlossene Gesellschaft Seite 27

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

}

int main()
int readfd, writefd;

if ((mknod (FIFO1, S IFIFO | PERMS, 0) < 0) && (errno
1=
EEXIST))
perror ("Kann FIFO1l nicht erstellen");
if ((mknod (FIFO2, S_IFIFO | PERMS, 0) < 0) && (errno

EEXIST)) {
unlink (FIFO1) ;
perror ("Kann FIFO2 nicht erstellen");
}
if ((readfd = open(FIFO1l, O RDONLY)) < O0)
perror ("Kann Lesefifo nicht AYffnen");
if ((writefd = open(FIFO2, O_WRONLY)) < 0)
perror ("Kann Schreibfifo nicht AYffnen") ;
server (readfd, writefd) ;
close (readfd) ;
close (writefd) ;
exit (0) ;

}
Client:
#include "header.h"

void client (readfd, writefd) {
char buff [MAXBUFF] ;

int n;

printf ("Dateinamen eingeben: ") ;

if (fgets(buff, MAXBUFF, stdin) == NULL) {
fprintf (stderr, "Client: Dateiname Lesefehler");
return;

}

n = strlen(buff) ;
if (buff[n-1]l=='\n') n--;

write (writefd, buff, n);

Erstellt fir Geschlossene Gesellschaft Seite 28

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

while ((n = read(readfd, buff, MAXBUFF)) > 0)
write(1l, buff, n);

if (n < 0)
fprintf (stderr, "Client: Daten-Lesefehler") ;

int main(void) {
int readfd, writefd;

if ((writefd = open(FIFO1l, O WRONLY)) < O0)
perror ("Kann Schreibfifo nicht &ffnen") ;

if ((readfd = open(FIFO2, O RDONLY)) < 0)
perror ("Kann Schreibfifo nicht &ffnen");

client (readfd, writefd);

close (readfd) ;

close (writefd) ;

unlink (FIFO1) ;

unlink (FIFO2) ;

exit (0) ;

Server:

#include <stdio.h>
#include <sys/msg.h>

#define KEY ((key_t) 21)
#define BUFFERSIZE 1024

int main ()

{

struct my msg
long mtype;
char cl[];

struct my msg message, send;
char puffer [BUFFERSIZE], temp[BUFFERSIZE];

int count, mg, msg id, msg type = 7688;
FILE *f;

if (mg=msgget (KEY, 0666 | IPC_CREAT) == -1){

Erstellt fir Geschlossene Gesellschaft Seite 29

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

printf ("Fehler beim Erzeugen der Message-
Queue\n") ;
exit (1) ;
} else {
printf ("Message-Queue erfolgreich angelegt\n") ;
}

if ((msg_id = msgget (KEY,0))<0) {
printf ("Message-Queue existiert nicht!\n");
exit (1) ;
} else {
printf ("Verbindung zur Message-Queue
erstellt.\n") ;

}

if
((count=msgrcv (msg 1id, &message, BUFFERSIZE, msg type, 0)
)

—= -1)

printf ("Nachrichtenabruf fehlgeschlagen\n") ;
exit (3);

} else {
printf ("Nachricht empfangen: ");

}

memcpy (puffer, message.c, count) ;
printf ("$s\n",puffer) ;

if ((f = fopen (puffer,"r")) == 0){
count=sprintf (temp, "Fehler beim Offnen der Datei

$s!\n",puffer) ;
strcpy (puffer, temp) ;
} else {
count=fread (puffer,1l,BUFFERSIZE, f) ;
fclose (f) ;

memcpy (message.c, puffer, strlen(puffer));

Erstellt fir Geschlossene Gesellschaft Seite 30

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

message.mtype = msg type;

if (msgsnd(msg id, &message, strlen(puffer), 0) == -
1)
{
printf ("Fehler beim Senden\n") ;
exit (1) ;
} else {
printf ("Nachricht zurlckgesendet\n") ;
}
exit (0) ;

}
Client;:

#include <stdio.h>
#include <sys/msg.h>

#define KEY ((key t) 21)
#define BUFFERSIZE 1024

int main()
{
struct my msg
long mtype;
char cl[];

}i
struct my msg message, rec;

char puffer [BUFFERSIZE], lesen[BUFFERSIZE] ;
int count, msg_id;
int msg _type = 7688;

if ((msg id = msgget (KEY,0))<0) {
printf ("Message-Queue existiert nicht!\n");
exit (1) ;
} else {
printf ("Verbindung zur Message-Queue
erstellt.\n") ;

}

printf ("Geben Sie den Namen der Datei an: ") ;
scanf ("%s",puffer);
fflush (stdout) ;

Erstellt fir Geschlossene Gesellschaft Seite 31

©

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen

Patrick Lipinski

if (puffer[strlen(puffer) - 1] == '\n')
puffer[strlen(puffer) - 11 = '\0';

memcpy (message.c, puffer, strlen(puffer));

message.mtype = msg type;

if (msgsnd(msg id, &message, strlen(puffer),

1)
{
printf ("Fehler beim Senden\n") ;
exit (1) ;
} else {
printf ("Nachricht gesendet\n") ;
}

if

0) =

((count=msgrcv (msg_ 1id, &message, BUFFERSIZE, msg type, 0)

)

== —1)

printf ("Nachrichtenabruf fehlgeschlagen\n") ;

exit (3) ;
} else {

printf ("Nachricht empfangen:\n\n") ;
}

memcpy (puffer, message.c, count) ;
puffer [count-1] = '\0';
printf ("$s\n",puffer) ;

if (msgctl(msg id, IPC RMID, 0) == -1){

printf ("Message-Queue nicht geschlossen\n") ;

} else {
printf ("Message-Queue geschlossen\n") ;
}

exit (0) ;

}
Ubung 9:

Erstellt fir Geschlossene Gesellschaft

Seite 32

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

Erstellt fir Geschlossene Gesellschaft Seite 33

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

header.h:

#include <stdio.h>

Erstellt fir Geschlossene Gesellschaft Seite 34

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>

#define SHMKEY ((key t) 7890)
#define CLIKEY ((key t) 7891)
#define SERVKEY ((key t) 7892)
#define PERMS 0666

#define MAXMESGDATA 128
#define MESGHDRSIZE (sizeof (Mesg) - MAXMESGDATA)

typedef struct ({
int mesg len;
char mesg data [MAXMESGDATA] ;
} Mesg;
Client:

#include "header.h"

int shm id, client sem, server_ sem;
Mesg *mesgptr;

/* sops-Befehlssatze flr den semop-Befehl */
static struct sembuf op lock[2] = {
/* 1. Stelle: Nummer des Semaphores

2. Stelle: Operation auf Semaphor
3. Stelle: Option flUr diese Operation */

0,0,0, /* Warten, bis Semaphor=0, also freigegeben */
0,1,0 /* Semaphor auf 1 setzen, also sperren */
static struct sembuf op unlock[1l] = {

0,-1,0 /* Semaphor wieder auf 0 setzen, also
freigeben */

}i
int my lock(int sem) {

/* Zuerst wird der Semaphor mit dem 1. Befehlssatz
aufgerufen:

Warten, bis Semaphor frei ist

Wenn das geschehen ist, wird der Semaphor mit dem 2.
Befehlssatz aufgerufen: Sperren fur andere Prozesse
2 Befehlssatze, weil letzte Option bei semop = 2 */

Erstellt fir Geschlossene Gesellschaft Seite 35

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

if (semop(sem, &op lock[0], 2) < 0) {
perror ("Client: Semaphor-Lock-Fehler") ;
return(1l) ;

}

int my unlock(int sem) {
if (semop(sem, &op unlock[0], 1) < 0) {
perror ("Client: Semaphor-Unlock-Fehler");
return(l) ;

}
}

void client (void) {

int n;
my lock(client sem);

fprintf (stdout, "Geben Sie einen Dateinamen ein:\n") ;
if (fgets(mesgptr->mesg data, MAXMESGDATA, stdin) ==

NULL)
fprintf (stderr, "Client: Dateinamen-

Lesefehler\n") ;
n = strlen(mesgptr->mesg data) ;

if (mesgptr-s>mesg data[n-1]== '\n') n--;
mesgptr->mesg len = n;

my unlock (server sem) ;

my lock(client sem);

while ((n = mesgptr->mesg len) > 0) ({
write(l, mesgptr->mesg data, n);

my unlock (server sem) ;

Erstellt fir Geschlossene Gesellschaft Seite 36

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

my lock(client sem);

}

int main(void) {

if ((shm id = shmget (SHMKEY, sizeof (Mesg), 0)) < 0) {
fprintf (stderr, "Client: kann auf Shared Memory

nicht
zugreifen\n") ;
exit (1) ;
}
if ((mesgptr = (Mesg *) shmat (shm id,0,0))== (Mesg *)

-1) {
fprintf (stderr, "Client: Shared Memory kann nicht
in den Adressbereich eingehdngt werden\n") ;

exit (2) ;

}

if ((client sem = semget (CLIKEY, 1, 0)) == -1) {
perror ("Client: Client-semget fehlgeschlagen");
exit (3);

}

if ((server sem = semget (SERVKEY, 1, 0)) == -1) {
perror ("Client: Server-semget fehlgeschlagen");
exit (4);

}

client () ;

if (shmdt (mesgptr) < 0) {
fprintf (stderr, "Client: Shared Memory kann nicht
ausgehangt
werden\n") ;
exit (5) ;

Erstellt fir Geschlossene Gesellschaft Seite 37

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

if (shmectl (shm id, IPC RMID,0) < 0) {
fprintf (stderr, "Client: Shared Memory kann nicht
geldscht
werden\n") ;
exit (6) ;

if (semctl(client sem,0,IPC RMID,0) < 0) {
fprintf (stderr, "Client: Client-Semaphor kann
nicht
geldscht

werden\n") ;
exit (7);

if (semctl (server sem,0,IPC RMID,0) < 0) {
fprintf (stderr, "Client: Server-Semaphor kann

nicht
geldscht
werden\n") ;
exit (8) ;
}
exit (0) ;

}

Server:
#include "header.h"

int shm id, client sem, server_ sem;
Mesg *mesgptr;

union semum {
int val;
struct semid ds *buf;

unsigned short int *array;

struct seminfo * buf;
} arg;

Erstellt fir Geschlossene Gesellschaft Seite 38

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

static struct sembuf op lock[2] = {

/* 1. Stelle: Nummer des Semaphores
2. Stelle: Operation auf Semaphor
3. Stelle: Option flUr diese Operation */

0,0,0, /* Warten, bis Semaphor=0, also freigegeben */
0,1,0 /* Semaphor auf 1 setzen, also sperren */
static struct sembuf op unlock[1l] = {

0,-1,0 /* Semaphor wieder auf 0 setzen, also
freigeben */

}i
int my lock(int sem) {

/* Zuerst wird der Semaphor mit dem 1. Befehlssatz

aufgerufen:

Warten, bis Semaphor frei ist

Wenn das geschehen ist, wird der Semaphor mit dem 2.
Befehlssatz aufgerufen: Sperren fur andere Prozesse
2 Befehlssatze, weil letzte Option bei semop = 2 */

if (semop(sem, &op lock[0], 2) < 0) {
perror ("Server: Semaphor-Lock-Fehler");
return(l) ;

}

int my unlock(int sem) {
if (semop(sem, &op unlock[0], 1) < 0) {
perror ("Server: Semaphor-Unlock-Fehler") ;

return(1l) ;

)

void server (void) {
int n, filefd;
char errmesg[256] ;

/* Warten auf die Nachricht (Dateinamen) des Client

*/

my lock (server_ sem) ;
mesgptr->mesg_data[mesgptr->mesg len] = '\0';

if ((filefd = open(mesgptr->mesg data, 0)) < 0) {

/* Fehlermeldung erzeugen */

Erstellt fir Geschlossene Gesellschaft Seite 39

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

sprintf (errmesg, " kann nicht gedffnet
werden\n") ;

strcat (mesgptr->mesg data, errmesg) ;
mesgptr->mesg len = strlen(mesgptr->mesg data) ;

my unlock(client sem) ;

my lock (server sem) ;
} else {

while ((n=read(filefd, mesgptr->mesg data,
MAXMESGDATA

> 0)

{

mesgptr->mesg len = n;

my unlock(client sem);

my lock (server sem) ;

}

close(filefd) ;
if (n<0) fprintf (stderr, "Server: Lesefehler\n");

mesgptr->mesg len = 0;

my unlock(client sem) ;

int main(void) {

if ((shm_id = shmget (SHMKEY, sizeof (Mesg),

Erstellt fir Geschlossene Gesellschaft Seite 40

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

PERMS | IPC_CREAT)) <

0)
{
fprintf (stderr, "Server: Shared Memory kann nicht
erzeugt
werden\n") ;
exit (1) ;
}
if ((mesgptr = (Mesg *) shmat(shm id,0,0)) ==(Mesg *)
-1) {
fprintf (stderr, "Server: Shared Memory kann nicht
in
den Adressbereich eingehangt
werden\n") ;
exit (2) ;
}

if ((client sem = semget (CLIKEY, 1, 0))

1l
1l
|
'_l
—_

if ((client sem = semget (CLIKEY, 1, IPC CREAT |

PERMS)) <
0)
{
perror ("Server: Client-semget
fehlgeschlagen") ;
exit (3);
}
}
if ((server sem = semget (SERVKEY, 1, 0)) == -1) {

if ((server sem = semget (SERVKEY, 1, IPC CREAT |

PERMS)) <
0) {
perror ("Server: Server-semget
fehlgeschlagen") ;
exit (4);

Erstellt fUr Geschlossene Gesellschaft Seite 41

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

arg.val=0;
if (semctl(client sem, 0, SETVAL, arg) == -1) {
perror ("Client-Semaphor-Initialisierung

fehlgeschlagen") ;
exit (5) ;

}

arg.val=1;
if (semctl (server sem, 0, SETVAL, arg) == -1) {
perror ("Server-Semaphor-Initialisierung

fehlgeschlagen") ;
exit (6) ;

}

server () ;

if (shmdt (mesgptr) < 0) {
fprintf (stderr, "Server: Shared Memory kann nicht

ausgehangt
werden\n") ;
exit (7) ;
}
exit (0) ;

Erstellt fUr Geschlossene Gesellschaft Seite 42

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

Ubung 10:

/* Kalkulationsblatt */

#include <stdio.hs>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>

/* nolock =1 zur Simualtion von Fehlern ohne Semaphoren,
sonst noclock = 0 */

int nolock = 0;

Erstellt fir Geschlossene Gesellschaft Seite 43

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

/* Index flUr Zeilen und Spalten der Summen */

int totalrow, totalcol;

/* Index fr Zeilen und Spalten der Semaphor-Arrays */
int row semas, col semas;

/* Makro zum zZugriff der Zelle auf Zeile r und Spalte c
das Kalk.blattes s */

#define CELL(s,r,c) (*((s)+((r)*NCOLS)+(c)))
/* Dimension der Matrix */

#define NROWS 8
#define NCOLS 8

/* Sperren des Semaphors n aus dem Satz sem */

void lock (int sem, int n) {
struct sembuf sop;

if (nolock) return;
SOp.sem num = n;
sop.sem op = -1;
sop.sem flg = 0;

/* Warten bis Semaphor frei ist */

semop (sem, &sop, 1);

}

/* Freigabe des Semaphors n aus dem Satz sem */

void unlock (int sem, int n) {
struct sembuf sop;

if (nolock) return;
Sop.sem num = n;
sop.sem op = 1;
sop.sem flg = 0;

/* Semaphor freigeben */

semop (sem, &sop, 1);

Erstellt fir Geschlossene Gesellschaft Seite 44

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

/* Anlegen des Semaphor-Satzes mit Schlissel k mit n
Semaphoren */

int make semas (key t k, int n) {
int semid, 1i;

if (nolock) return 0;

/* Ein existierender Semaphor-Satzes mit Schlssel k
wird geldscht */

if ((semid = semget(k,n,0)) != -1)
semctl (semid, 0, IPC_RMID) ;

if ((semid = semget(k, n, IPC_CREAT | 0600)) != -1){
/* Alle Semaphore freigeben */

for (i = 0; 1 < n; i++)
unlock (semid, 1) ;
}

return semid;

}

/* Schlssel fur shared memory und Zeilen Semaphor-Array.

Das Spalten-Semaphor-Array hat den Schlssel SHEET KEY +1
*/

#define SHEET KEY 1841
/* make random entry selektiert zufic¥%lig eine Zelle, fgt
einen zufalligen Wert ein und berechnet die Zeilen- und

Spaltennummern neu. * /

void make random entry (int *s) {
int row, col, old, new;

/* Berechnen der Zellen-Indices und des neuen Wertes

*/

row = rand() % (NROWS-1) ;
col = rand() % (NCOLS-1);
new = rand() % 100;

/* Sperren der Zeile und Spalte */

lock (row_ semas, row) ;
lock (col semas, col);

/* Neuen Zellenwert eintragen */

Erstellt fir Geschlossene Gesellschaft Seite 45

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

old = CELL(s, row, col);
CELL (s, row, col) = new;

sleep (1) ;

(new-o01d) ;
(new-old) ;

CELL (s, row, totalcol)

+=
CELL (s, totalrow, col) +=

unlock (col semas, col);
unlock (row semas, row) ;

}

void print and check(int *s) {
int row, col, sum, totalbad;

static int scount = 0;

totalbad = 0;

scount++;

for (row = 0; row < NROWS; row++)

sum = 0;

lock (row_semas, row) ;

for (col = 0; col < NCOLS; col++) {
if (col != totalcol)
sum += CELL(s, row, col);
printf ("%$5d", CELL(s, row, col));

)

if (row != totalrow)
totalbad += (sum != CELL(s, row, totalcol));

unlock (row semas, row) ;
printf ("\n");

}

for (col = 0; col < totalcol; col++) {

sum = 0;

Erstellt fir Geschlossene Gesellschaft Seite 46

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

lock (col semas,col) ;

for (row = 0; row < totalrow; row++)
sum += CELL(s, row, col);
totalbad += (sum != CELL(s, totalrow, col));

unlock (col semas, col);

}

if (totalbad)
fprintf (stderr, "Kalkulationsblatt %d falsch\n",

scount) ;
else
fprintf (stderr, "Kalkualtionsblatt %d korrekt\n",

scount) ;
if ((scount % 100) == 0)

fprintf (stderr, "Kalkulationsblatt %d
berechnet\n",

scount) ;
printf("-----------"-"-"“""“"“"" "~
\n") ;
sleep (1) ;

int main(void) {
int id, row, col, *sheet;

setbuf (stdout, NULL) ;
setbuf (stderr, NULL) ;

totalrow NROWS - 1;
totalcol = NCOLS - 1

id = shmget (SHEET KEY, NROWS*NCOLS*sizeof (int),
IPC_CREAT

0600) ;
if (id < 0){

Erstellt fUr Geschlossene Gesellschaft Seite 47

Betriebssysteme Labor — Prof. Kremer — SS05
13.07.05: Musterlésungen Patrick Lipinski

perror ("shmget failed:");
exit (1) ;

}

sheet = (int *)shmat(id, 0, 0);

if (sheet <= (int *) (0)){
perror ("shmat failed:");
exit (2) ;

for (row = 0; row < NROWS; row++)
for (col = 0; col < NCOLS; col++)
CELL (sheet, row, col) = 0;

row_semas
col semas

make semas (SHEET KEY, NROWS) ;
make semas (SHEET KEY + 1, NCOLS) ;

if ((row semas < 0) || (col semas < 0)){
perror ("shmget failed:");
exit (3);

}

if (fork()){
while (1)
print and check (sheet) ;
telse {
while (1)
make random entry (sheet) ;

Erstellt fir Geschlossene Gesellschaft Seite 48

