
Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 1

1. Übung:

• HOME-Verzeichnis: echo $HOME oder cd home (cd ~) und dann pwd
• Alle Dateien anzeigen: ls –a

1. find –name ’*a*’ –print
2. find –name ’s[aeiou]*’ –print
3. find –name ’*[a-d].h’ –print
4. find –name ’*r*[a-d].h’ –print

 • ls > $HOME/lsbin

 1. ls -R > out.s 2> out.e
 2. ls -R > out.se 2>> out.se
 3. ls -R > out 2> out

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 2

Unterschied: Reihenfolge der Fehlermeldungen.

2. Übung:

 1. ps -ur

2. ps –l (Size = maximal erforderlicher Speicher, Resident Set Size (RSS) =
 aktuell belegter Speicher

 3. Baumansicht in kpm

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 3

 #finfo von Patrick Lipinski

#!/bin/bash

#Mehr als ein Parameter?
if test $# -ne 1
then
 echo "Aufruf: finfo <Pfad/Datei> (Genau ein
Parameter)"
 exit 1

#Existiert die Datei?
elif ! test -e $1
then
 echo "Datei existiert nicht"

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 4

 exit 2

#Ist es eine gewöhnliche Datei?
elif ! test -f $1
then
 echo "keine gewöhnliche Datei"
 exit 3
fi

#Informationsverarbeitung und Ausgabe der Informationen,
wenn
#es vorher keinen Fehler gab.
ls -l --time-style="+%d.%m.%y" $1 > finfo_tmp 2>
/dev/null
read rec z1 bes gru gro let_d let_m let_y dat < finfo_tmp
echo "---------------------------------------"
echo "Datei: $dat"
echo "Rechte: $rec"
echo "Groesse: $gro byte"
echo "Besitzer: $bes"
echo "Gruppe: $gru"
echo "letzte Änderung: $let_d $let_m $let_y"
echo "---------------------------------------"
rm finfo_tmp
exit 0

3. Übung:

 alias dir=’ls –la’
 alias copy=cp
 alias del=’rm –i’
 alias MD=mkdir
 alias rd=rmdir
 alias move=mv

Speicherung der Befehle in der .bashrc und neustarten der Shell oder
Speichern in doshabbits und die Datei mit . doshabbits aufrufen.

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 5

1. Voreinstellung der Zugriffsrechte einer neuen Datei. Dabei sind die

übergebenen Parameter genau umgekehrt, wie man es erwarten würde:
umask 077 gibt dem User volle Rechte, der Gruppe und den anderen
aber nicht. Nur umask gibt die aktuelle Einstellung aus.
Kurze Erläuterung zu der Zahl: Das ist eine Oktalzahl, die binär
umgeschrieben die Rechte einer Datei angibt. Eine Datei kann die Rechte
rwx rwx rwx haben. Die ersten drei Zeichen stehen für den User, die
zweiten drei Zeichen für die Gruppe des Users und die dritten drei
Zeichen für alle anderen. 111 111 111 bedeutet also volle Rechte für alle,
in oktaler Schreibweise ist das 777.

 umask 000 rw- rw- rw-
 umask 077 rw- --- ---
 umask 022 rw- r-- r--
 umask 777 --- --- ---

2. umask 077, touch neue_testdatei
3. chmod g+r neue_testdatei

Der Gruppe wird das Recht r(ead) gegeben.
4. chown kann nur der root ausführen. chown steht für „Change Owner“.

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 6

#!/bin/bash

solange die Eingabe nicht ende ist, weitermachen.
while ["$a" != "ende"] ;
do

echo "Bitte Kommando eingeben: "
b ist das Rechenzeichen
read a b c

case "$b" in
+) (("result=a + c"))
 echo "$a + $c = $result"
 continue
 ;;

-) (("result=a - c"))
 echo "$a - $c = $result"
 continue
 ;;

* gilt eigentlich als Ersatzzeichen für alle anderen
Zeichen, so dass es hier mit dem \ maskiert werden muss.
*) (("result=a * c"))
 echo "$a * $c = $result"

continue
;;

/) (("result=a/c"))

echo "$a / $c = $result"
continue
;;

"") if ["$a" = "ende"]

then
 exit 0
fi
;;

*) echo "falsche Eingabe"
exit 1
;;

esac
done

Alternative Möglichkeit mit „let“:

#!/bin/bash

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 7

clear

while ["$a" != "ende"] ;
do

echo -n "Bitte Term eingeben: "
read a x b

case "$x" in
+) let "erg=a + b"
 echo "$a + $b = $erg"
 continue
 ;;

-) let "erg=a - b"
 echo "$a - $b = $erg"
 continue
 ;;

*) let "erg=a * b"
 echo "$a * $b = $erg"
 continue
 ;;

/) let "erg=a/b"
 echo "$a / $b = $erg"
 continue
 ;;

"") if ["$a" = "ende"]
 then
 continue
 fi
 ;;
*) echo "falsche Eingabe"
 exit 1
 ;;

esac
done
echo "Taschenrechner beendet"
clear
exit 0

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 8

Übung 4:

#!/bin/bash
clear

#Papierkorb schon vorhanden?
if ! test -e ~/papierkorb
then
 mkdir ~/papierkorb

#alternativ auch moeglich ist $HOME/.papierkorb
fi

#Datei zum Loeschen vorhanden?
if ! test -e $1

then echo "Es existiert keine Datei"
exit 0

fi

#Ordner?
if ! test -f $1
then echo "Diese Datei ist keine ASCII Datei"

exit 1
fi

#Schreibrechte?
if ! test -w $1

then echo "Diese Datei ist nicht schreibbar"
exit 3

fi

#Leserechte?

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 9

if ! test -r $1
then echo "Diese Datei ist nicht lesbar"
exit 4

fi

#liefert Verzeichnisstruktur und speichert in temp-Datei
dirname $1 > temp1

#liefert Dateinamen und speichert in temp-Datei
basename $1 > temp2

read verzeichnis < temp1
read datei < temp2

#Abfrage, ob gleichnamige Datei schon im Papierkorb vorhanden
if test -e ~/papierkorb/$datei

then echo "Diese Datei besteht bereits in Papierkorb"
exit 5

fi

#Datei wird in den Papierkorb verschoben
mv $1 ~/papierkorb/$datei
rm temp1; rm temp2

echo "Datei $1 wurde in den Papierkorb verschoben!"

exit 0

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 10

#!/bin/bash
clear

Ueberprueft, ob Datei im Papierkorb ueberhaupt vorhanden
ist
if ! test -e ~/papierkorb/$1
then

echo "Datei besteht nicht!"
exit 1

fi

-i fragt nach, ob Datei ueberschrieben werden soll
-v zeigt an, welche Aktion durchgefuehrt wurde
#mv -iv ~/papierkorb/$1 ~/
mv -iv ~/papierkorb/$1 ./
exit 0

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 11

Übung 5:

#!/bin/bash
#Test auf Existenz des Verzeichnisses
if ! test -e $1
then

echo "Verzeichnis existiert nicht!"
exit 1

fi

#Endlosschleife
while true
do
 #finde alle Dateien und speichere ihre Namen in $Datei
 #(Ein Namen pro Schleifendurchlauf)
 for Datei in `find $1 -name "*" -print 2>/dev/null`
 do
 echo "$Datei" > bkdaemon_tmp

 #Wenn es schon ein Backup gibt oder die Datei
selbst
 #ein Backup ist, gehe zur naechsten Datei
 if grep .bak bkdaemon_tmp 2>/dev/null >/dev/null

|| cmp -s $Datei $Datei.bak

then
 continue
 fi

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 12

 #Existenz wird ueberprueft
 if [-f $Datei]
 then
 cp $Datei $Datei.bak
 fi
 done
rm bkdaemon_tmp
sleep 5
#Ist die Sleepzeit abgelaufen, so beginnt die Endlosschleife
von vorne.
done
exit 0

#!/bin/bash

#Die Userdatei wird zeilenweise Über eine pipe in eine
while-#Schleife geleitet
sort /etc/passwd | while read Kennung REST
do

#Nur der Username wird aus der Passwd genommen
#das set trennt die Variable $Kennung an jedem
#Doppelpunkt, die einzelnen Elemente stehen dann in
$1, #$2 usw.
IFS=:
set $Kennung

#Anzahl aller Prozesse: Ausgabe aller Prozesse, suche
#nach jeder Zeile mit dem aktuellen User und Zählung
der #Zeilen

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 13

prozesse=`ps aux|grep $1 2>/dev/null|wc -l`
((count += 1))
#Alternativ let count = count + 1
#Unterscheidung zwischen an- und abgemeldeten Usern.
Zu #beachten ist, dass der angemeldete Username nur 8
#Zeichen lang sein darf.
if who | grep $1 >/dev/null 2>/dev/null
then
echo $count\) $1 ist angemeldet, $prozesse
Prozess\(e\)
else
echo $count\) $1 ist abgemeldet, $prozesse
Prozess\(e\)
fi

done
exit 0

Übung 6:

 /* umgebungsvariable.c - Übung 6, Aufgabe 1a) */

/* Ausgabe des Inhalts einer Umgebungsvariablen */

#include <stdio.h>
#include <stdlib.h>

main (int argc, char *argv[], char *envp[]){

char *inhalt;

/* *vname ist der Zeiger auf PWD, vname dann
der Inhalt von PWD*/
char *vname="PWD";

/* getenv liefert den Wert der Variable */
inhalt = getenv(vname);
if (inhalt != NULL) printf("%s\n", inhalt);

}

/* argumentenliste.c - Übung 6, Aufg. 1b) */
/* Ausgabe aller Aufrufparameter und Umgebungsvariablen
*/

#include <stdio.h>

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 14

main (int argc, char *argv[], char *envp[]){

int i;
int x=0;

/* Schleife die alle Aufrufparameter durchläuft */
printf("Argumenten-Liste (Anfang)\n");
for (i=0; i < argc; i++) {
 printf("%i. Aufrufparameter: %s\n", i, argv[i]);
}
printf("Argumenten-Liste (Ende)\n\n");

/* Schleife die alle Umgebungsparameter durchläuft */
printf("Umgebungsvariablen-Liste (Anfang) \n");
while(*envp != NULL) {
 printf("%i. Umgebungsvariable: %s\n", x++
,*envp++);
}
printf("Umgebungsvariablen-Liste (Ende) \n");

}

/* shell_kommando.c - Übung 6, Aufg. 1c) */
/* Ausführung eines beliebigen Shell-Kommandos */

#include <stdio.h>
#include <stdlib.h>

main (void){

int rc;
char command[1024];

printf("Kommando eingeben: ");

/* Eingabe einlesen */
scanf("%s", command);

/* system(...) für Kommandoausführung */
rc=system(command);

if (rc != 0){
 printf("\nKommando fehlgeschlagen! rc = %d\n",
rc);
}

}

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 15

/* arbeitsverzeichnis.c - Übung 6, Aufg. 1d) */
/* Wechsel des aktuellen Arbeitsverzeichnis */

#include <stdio.h>
#include <sys/param.h>
#include <unistd.h>

main (void){

char dir[MAXPATHLEN], subdir[MAXPATHLEN];

/* getcwd legt eine Kopie von PWD an
Returncode NULL bedeutet Fehler */
if (getcwd(dir, MAXPATHLEN) == NULL){

perror("getcwd error");
exit(1);

}
else{
 printf("Aktuelles Arbeitsverzeichnis: %s\n",
dir);
}

printf("Verzeichnis wechseln: ");

/* Unterverzeichnis einlesen */
scanf("%s", subdir);

/* Verzeichnis wechseln mit "chdir" */
if(chdir(subdir) == -1){

perror("Falsches Verzeichnis!!");
 }
 if(getcwd(dir, MAXPATHLEN) == NULL){

perror("getcwd error");
exit(1);

}
else{
 printf("Aktuelles Arbeitsverzeichnis: %s\n",
dir);
}

}

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 16

/* waise.c - Übung 6, Aufg.2 */
/* Erzeugung eines Waisen-Prozesses, der
von init adoptiert wird */

#include <stdio.h>

int main(void) {

int pid;

/* Beim ersten Aufruf wird nur der erste Zweig
der if-Bedingung ausgeführt, dabei wird der
Kindprozess gestartet, der nur den zweiten Teil
des Zweiges ausführt (Da Returncode von fork im
Kindprozess = 0)
Der Elternprozess beendet sich, der Kindprozess
steckt in der while-Schleife fest und wird zur
Waise. */

if ((pid=fork())!=0) {
 printf ("Elternprozess erzeugte PID %d\n", pid);
}
else {
 while (1) {
 sleep (4);
 printf("Elternprozess hat PID %d \n",
getppid());
 }
}

}

/* zombie.c - Ãœbung 6, Aufg. 3 */
/* Erzeugung eines Zombie-Prozesses */

#include <stdio.h>

int main(void) {

int pid;

/* Beim ersten Aufruf wird nur der erste Zweig
der if-Bedingung ausgeführt, dabei wird der
Kindprozess gestartet, der nur den zweiten Teil
des Zweiges ausführt (Da Returncode von fork
im Kindprozess = 0)
Der Kindprozess beendet sich, der Elternprozess
steckt in der while-Schleife fest und fragt nie

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 17

den exit-code des Kindprozesses ab. Der Kindprozess
wird zum Zombie in der Prozesstabelle, der sich mit
kill nicht beenden lässt. */

if ((pid=fork())!=0) { /*Elternprozess */

printf ("Kindprozess: PID %d\n", pid);
while (1) sleep(10);

}
else { /*Kindprozess*/
 printf("Elternprozess: PPID %d\n", getppid());
}

}

/* warten.c - Übung 6, Aufg. 4 */
/* Erzeugung eines Elternprozesses, der auf den
Kindprozess wartet */

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>

int main(void) {

int i, pid, exit_status;

if ((pid=fork())!=0) { /*Elternteil*/

/* Arbeit des Elternteils */
printf("Elternteil arbeitet...\n");
sleep(2);
printf("Elternteil fertig, warten auf
Kind...\n");

/* Warten auf Ende des Kindteils */
if (wait(&exit_status)==pid)

printf("Elternprozess sagt: Kindprozess mit %d
 beendet\n",
WEXITSTATUS(exit_status));

}
else { /*Kindprozess*/

/* Arbeit des Kindteils */
sleep(1);
printf("Kindteil arbeitet...\n");
sleep(3);
printf("Kindteil fertig!\n");

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 18

/* Ende des Kindteils */
exit(0);

}
}

/* exec_menu.c - Übung 6, Aufg. 5 */
/* Einfaches Menü mit exec */

#include <stdio.h>

int main(void) {

char *kommando[] = {"who", "ls", "date", "xxx"};
int i;

printf("0=who, 1=ls, 2=date, 3=xxx\n");
scanf("%d", &i);

/* Programm wird bei Falscheingabe verlassen */
if (i > 3 || i < 0) {

printf("Falsche Eingabe\n");
exit(1);

}

/* Überlagerung des Prozesses "exec_menu" mit dem
Shell-kommando */
execlp(kommando[i], kommando[i], 0);

/* Falls es den Shell-Befehl nicht gibt, wird der
Prozess nicht überlagert und die Fehlermeldung kann
ausgegeben werden*/
printf("Kommando nicht gefunden.\n");

}

/* efw_menu.c - Übung 6, Aufg. 6 */
/* Erzeugung einer kleinen Menü-Shell */

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 19

#include <stdio.h>
#include <sys/wait.h>

int main(void) {

char *kommando[] = {"who", "ls", "date", "xxx"};
int i, rc;

while(1) {

printf("0=who, 1=ls, 2=date, 3=xxx, 4=Ende\n");
scanf("%d", &i);

if (i==4){

printf("Ende.\n");
exit(0);

} else if (i > 4 || i < 0) {
/* Menü-Shell wird bei Falscheingabe verlassen
*/
printf("Falsche Eingabe\n");
exit(1);

 }

 if (fork()==0) { /*Kindprozess */

/* Kindprozess führt Kommando aus */

/* Überlagerung des Prozesses "exec_menu" mit
dem
Shell-kommando */
execlp(kommando[i], kommando[i], 0);

/* Falls es den Shell-Befehl nicht gibt, wird
der
Prozess nicht überlagert und die Fehlermeldung
kann ausgegeben werden*/
printf("Kommando nicht gefunden.\n");
exit(1);

 } else { /* Elternprozess */

/* Elternprozess wartet auf Kindprozess */
wait(&rc);
printf ("Kind mit %d beendet \n",

 WEXITSTATUS(rc));

}
}

}

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 20

/* signale.c - Übung 6, Aufg. 7 */
/* Interrupthandler für SIGQUIT und SIGINT */

#include <stdio.h>
#include <sys/signal.h>

void sig_handler(int sig) {

printf("Signal %d empfangen\n", sig);
if (sig == SIGQUIT){

/* SIG_IGN = ignorieren */
signal(SIGQUIT, SIG_IGN);
signal (SIGINT, sig_handler);

} else if (sig == SIGINT) {
signal(SIGINT, SIG_IGN);
signal (SIGQUIT, sig_handler);

}
}

int main(void) {

int i=0;
signal (SIGQUIT, sig_handler);
signal (SIGINT, sig_handler);
while(1) {

printf("working... %d\n",i++);
sleep(3);

}
}

Übung 7:

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 21

 strace –t –f –p <PID>

Zuerst muss die Shell gestartet werden, dann wird der obige Befehl in einem
anderen Bash-Fenster ausgeführt. -t gibt die Zeit mit aus, -f folgt
Kindprozessen und -p <PID> gibt die PID an, die strace überwachen soll.

/* shell.c - Übung 7, Aufg. 3 */
/* Shell mit Hintergrundprozessen */

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

#define BUFLEN 512

static const char *progname = "shell";

static void write_prompt() {

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 22

 fprintf(stdout, "%s> ", progname);
}

static char* next_token(char **s) {

 char *token, *p;
 /* isspace prüft auf Leerzeichen */
 for (p = *s; *p && isspace(*p); p++) {
 *p = '\0';
 }
 token = p;
 for (; *p && !isspace(*p); p++) ;
 for (; *p && isspace(*p); p++) {
 *p = '\0';
 }
 *s = p;
 return token;
}

static void read_command(char **cmd, char ***args) {
 static char line[BUFLEN];
 static char* argv[BUFLEN];
 char *p;
 int i;

 memset((char *) argv, 0, sizeof(argv));
 p = fgets(line, sizeof(line), stdin);

 for (i = 0; p && *p; i++) {

/* bei der 1. Iteration wird &line an next_token
übergeben */
/* p enthält nach dem Aufruf einen Zeiger auf den
Anfang des nächsten token oder *p = NULL. */
argv[i] = next_token(&p);

 }
 *cmd = argv[0];
 *args = argv;
}

int main(int argc, char **argv) {

 pid_t pid, bg_pid;
 int status, cnt, i,j;
 char *cmd; // String
 char **args; // String-Array

 while (1) {

write_prompt();
read_command(&cmd, &args);

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 23

if (cmd == NULL || strcmp(cmd, "exit") == 0) {
 break;
}

if (strlen(cmd) == 0) {
 continue;
}
pid = fork();
if (pid == -1) {
 perror(progname);
 continue;
}
if (pid == 0) {
 cnt=0;
 /* Ermittlung der Länge des Argumenten-Arrays
*/
 while (args[cnt]!=(NULL)){cnt++;}

/* Wenn das letzte Zeichen ein & ist ->
Hintergrundprozess */

 if (strcmp(args[cnt-1], "&") == 0) {

/* Kopie des aktuellen Prozesses */
bg_pid = fork();

if (bg_pid!=0){

/*Elternprozess endet sofort */
exit(0);

 } else {
/* Kindprozess löscht das & und
startet,
 * da der Elternprozess schon beendet
ist,
 * wird das Kind zur Waise und wird
von
 * init adoptiert. Somit läuft das
 * Programm unabhängig von der Shell
 */
args[cnt-1] = NULL;
execvp(cmd, args);
perror(progname);
exit(1);

 }
 }
 execvp(cmd, args);
 perror(progname);
 exit(1);
} else {
 waitpid(pid, &status, 0);
}

 }

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 24

 return 0;
}

Endlosschleife zum Testen:

#include <stdio.h>

int main(void) {

int i=0;
while(1) {

printf("working... %d\n",i++);
sleep(2);

}
}

Übung 8:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/errno.h>
#include <fcntl.h>

#define MAXBUFF 1024

void client(readfd, writefd) {

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 25

char buff[MAXBUFF];
int n;

/* Dateiname einlesen */

printf("Dateiname eingeben: ");
if (fgets(buff, MAXBUFF, stdin) == NULL) {

fprintf(stderr, "client: Fehler beim Einlesen");
return;

}
n = strlen(buff);
if (buff[n-1] == '\n') n--;

/* Dateiname an den Server schicken */

write(writefd, buff, n);

/* Daten vom Server empfangen und auf die
Standardausgabe senden */

while ((n = read(readfd, buff, MAXBUFF)) > 0)

write(1, buff, n);
if (n < 0) {
 fprintf(stderr, "client: Datenlesefehler");
}

 }

 void server(int readfd, int writefd) {
char buff[MAXBUFF];
char errmsg[256];
int n, fd;
extern int errno;

/* Dateiname lesen */

if ((n = read(readfd, buff, MAXBUFF)) <= 0) {
 fprintf(stderr, "Server: Dateiname Lesefehler");
 return;
}
buff[n]='\0';

/* Datei öffnen */

if ((fd = open(buff, 0)) < 0) {

/* Öffnen fehlgeschlagen, Fehlermeldung an Client
schicken */

sprintf(errmsg, "Server: Öffnen fehlgeschlagen:
%s\n",

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 26

 buff);
write(writefd, errmsg, strlen(errmsg));

} else {

/* Öffnen erfolgreich, Dateiinhalt an den client
schicken */

while ((n = read(fd, buff, n)) > 0)
 write(writefd, buff, n);
if (n < 0)
 fprintf(stderr, "Server: Lesefehler");

}
}

int main(void) {

int childpid, pipe1[2], pipe2[2];

/* Pipes anlegen */

if (pipe(pipe1) < 0 || pipe(pipe2) < 0) {

fprintf(stderr, "Pipes können nicht geöffnet
 werden.");
exit(1);

}
if ((childpid = fork()) < 0) {

fprintf(stderr, "fork() fehlgeschlagen");
exit(2);

} else if (childpid > 0) { /* Elternteil */
close(pipe1[0]);
close(pipe2[1]);
client(pipe2[0], pipe1[1]);
while (wait(0) != childpid);
close(pipe1[1]);
close(pipe2[0]);
exit(0);

} else { /* Kindteil */
close(pipe1[1]);
close(pipe2[0]);
server(pipe1[0], pipe2[1]);
close(pipe1[0]);
close(pipe2[1]);
exit(0);

}
}

Header:

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 27

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/errno.h>
#include <fcntl.h>
extern int errno;

#define FIFO1 "/tmp/fifo.1"
#define FIFO2 "/tmp/fifo.2"
#define PERMS 0666
#define MAXBUFF 1024

Server:

#include "header.h"

void server(int readfd, int writefd) {

char buff[MAXBUFF];
char errmsg[256];
int n, fd;
extern int errno;

/* Dateiname lesen */

if ((n = read(readfd, buff, MAXBUFF)) <= 0) {

fprintf(stderr, "Server: Dateiname Lesefehler");
return;

}
buff[n]='\0';

/* Datei Öffnen */

if ((fd = open(buff, 0)) < 0) {

/* Datei öffnen fehlgeschlagen, Fehlermeldung
ausgeben */

sprintf(errmsg, "Server: Kann Datei nicht öffnen:
 %s\n",
buff);
write(writefd, errmsg, strlen(errmsg));

} else {

/* Datei öffnen erfolgreich, Dateiinhalt an den
Client schicken */

while ((n = read(fd, buff, MAXBUFF)) > 0)
 write(writefd, buff, n);
if (n < 0)
 fprintf(stderr, "Server: Lesefehler");

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 28

 }
}

int main() {

int readfd, writefd;

if ((mknod(FIFO1, S_IFIFO | PERMS, 0) < 0) && (errno
!=

 EEXIST))
 perror("Kann FIFO1 nicht erstellen");
if ((mknod(FIFO2, S_IFIFO | PERMS, 0) < 0) && (errno
!=

 EEXIST)) {
 unlink(FIFO1);
 perror("Kann FIFO2 nicht erstellen");
}
if ((readfd = open(FIFO1, O_RDONLY)) < 0)
 perror("Kann Lesefifo nicht Ã¶ffnen");
if ((writefd = open(FIFO2, O_WRONLY)) < 0)
 perror("Kann Schreibfifo nicht Ã¶ffnen");
server(readfd, writefd);
close(readfd);
close(writefd);
exit(0);

}

Client:

#include "header.h"

void client(readfd, writefd) {

char buff[MAXBUFF];
int n;

/* Dateiname von Standardeingabe lesen */

printf("Dateinamen eingeben: ");
if (fgets(buff, MAXBUFF, stdin) == NULL) {
 fprintf(stderr, "Client: Dateiname Lesefehler");
 return;
}
n = strlen(buff);
if (buff[n-1]=='\n') n--;

/* Dateiname an Server schicken */

write(writefd, buff, n);

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 29

/* Daten vom Server lesen und auf die Standardausgabe
schreiben */

while ((n = read(readfd, buff, MAXBUFF)) > 0)
 write(1, buff, n);
if (n < 0)
 fprintf(stderr, "Client: Daten-Lesefehler");

}

int main(void) {

int readfd, writefd;

if ((writefd = open(FIFO1, O_WRONLY)) < 0)
 perror("Kann Schreibfifo nicht öffnen");
if ((readfd = open(FIFO2, O_RDONLY)) < 0)
 perror("Kann Schreibfifo nicht öffnen");
client(readfd, writefd);
close(readfd);
close(writefd);
unlink(FIFO1);
unlink(FIFO2);
exit(0);

}

Server:

#include <stdio.h>
#include <sys/msg.h>

#define KEY ((key_t) 21)
#define BUFFERSIZE 1024

int main()
{

struct my_msg {
long mtype;
char c[];

};

struct my_msg message, send;

char puffer[BUFFERSIZE], temp[BUFFERSIZE];
int count, mq, msg_id, msg_type = 7688;
FILE *f;

/* Anlegen der Message-Queue */

if(mq=msgget(KEY,0666|IPC_CREAT) == -1){

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 30

printf("Fehler beim Erzeugen der Message-
Queue\n");
exit(1);

} else {
 printf("Message-Queue erfolgreich angelegt\n");
}

/* Verbindung zur Message Queue erstellen */

if ((msg_id = msgget(KEY,0))<0) {

printf("Message-Queue existiert nicht!\n");
exit(1);

} else {
 printf("Verbindung zur Message-Queue
erstellt.\n");
}

/* Nachricht von Client empfangen */

if
((count=msgrcv(msg_id,&message,BUFFERSIZE,msg_type,0)
)

 == -1)
{

printf("Nachrichtenabruf fehlgeschlagen\n");
exit(3);

} else {
 printf("Nachricht empfangen: ");
}

/* Verarbeitung der Nachricht */

memcpy(puffer, message.c, count);
printf("%s\n",puffer);

/* Datei öffnen & Inhalt lesen */

if((f = fopen(puffer,"r")) == 0){

count=sprintf(temp,"Fehler beim Öffnen der Datei

 %s!\n",puffer);
strcpy(puffer,temp);

} else {
count=fread(puffer,1,BUFFERSIZE,f);
fclose(f);

}

/* Dateiinhalt bzw. Fehlermeldung zurück an Client */

memcpy(message.c, puffer, strlen(puffer));

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 31

message.mtype = msg_type;

/* Message senden */

if (msgsnd(msg_id, &message, strlen(puffer), 0) == -
1)
{

printf("Fehler beim Senden\n");
exit(1);

} else {
 printf("Nachricht zurückgesendet\n");
}
exit(0);

}

Client:

#include <stdio.h>
#include <sys/msg.h>

#define KEY ((key_t) 21)
#define BUFFERSIZE 1024

int main()
{

struct my_msg {
long mtype;
char c[];

};

struct my_msg message, rec;

char puffer[BUFFERSIZE], lesen[BUFFERSIZE];
int count, msg_id;
int msg_type = 7688;

/* Verbindung zur Message Queue erstellen */

if ((msg_id = msgget(KEY,0))<0) {

printf("Message-Queue existiert nicht!\n");
exit(1);

} else {
 printf("Verbindung zur Message-Queue
erstellt.\n");
}

/* Dateinamen einlesen */

printf("Geben Sie den Namen der Datei an: ");
scanf("%s",puffer);
fflush(stdout);

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 32

/* Message erstellen */

if (puffer[strlen(puffer) - 1] == '\n')
 puffer[strlen(puffer) - 1] = '\0';
memcpy(message.c, puffer, strlen(puffer));
message.mtype = msg_type;

/* Message senden */

if (msgsnd(msg_id, &message, strlen(puffer), 0) == -
1)
{

printf("Fehler beim Senden\n");
exit(1);

} else {
 printf("Nachricht gesendet\n");
}

/* Nachricht von Server empfangen */

if
((count=msgrcv(msg_id,&message,BUFFERSIZE,msg_type,0)
)

 == -1)
{

printf("Nachrichtenabruf fehlgeschlagen\n");
exit(3);

} else {
 printf("Nachricht empfangen:\n\n");
}

/* Verarbeitung der Nachricht */

memcpy(puffer, message.c, count);
puffer[count-1] = '\0';
printf("%s\n",puffer);

/* Message-Queue schließen */

if (msgctl(msg_id, IPC_RMID, 0) == -1){
 printf("Message-Queue nicht geschlossen\n");
} else {
 printf("Message-Queue geschlossen\n");
}
exit(0);

}

Übung 9:

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 33

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 34

header.h:

#include <stdio.h>

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 35

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>

#define SHMKEY ((key_t) 7890)
#define CLIKEY ((key_t) 7891)
#define SERVKEY ((key_t) 7892)
#define PERMS 0666

#define MAXMESGDATA 128
#define MESGHDRSIZE (sizeof(Mesg) - MAXMESGDATA)

typedef struct {
int mesg_len;
char mesg_data[MAXMESGDATA];
} Mesg;

Client:

#include "header.h"

int shm_id, client_sem, server_sem;
Mesg *mesgptr;

/* sops-Befehlssätze für den semop-Befehl */

static struct sembuf op_lock[2] = {

/* 1. Stelle: Nummer des Semaphores
 2. Stelle: Operation auf Semaphor
 3. Stelle: Option für diese Operation */

0,0,0, /* Warten, bis Semaphor=0, also freigegeben */
0,1,0 /* Semaphor auf 1 setzen, also sperren */

};

static struct sembuf op_unlock[1] = {
 0,-1,0 /* Semaphor wieder auf 0 setzen, also
freigeben */
};

int my_lock(int sem) {

/* Zuerst wird der Semaphor mit dem 1. Befehlssatz
aufgerufen:
Warten, bis Semaphor frei ist
Wenn das geschehen ist, wird der Semaphor mit dem 2.
Befehlssatz aufgerufen: Sperren für andere Prozesse
2 Befehlssätze, weil letzte Option bei semop = 2 */

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 36

if (semop(sem, &op_lock[0], 2) < 0) {
perror("Client: Semaphor-Lock-Fehler");
return(1);

 }
}

int my_unlock(int sem) {

if (semop(sem, &op_unlock[0], 1) < 0) {
perror("Client: Semaphor-Unlock-Fehler");
return(1);

}
}

void client(void) {

int n;

/* Kontrolle über Shared Memory erlangen */

my_lock(client_sem);

/* Dateinamen einlesen */

fprintf(stdout, "Geben Sie einen Dateinamen ein:\n");
if (fgets(mesgptr->mesg_data, MAXMESGDATA, stdin) ==

 NULL)
 fprintf(stderr, "Client: Dateinamen-
Lesefehler\n");
n = strlen(mesgptr->mesg_data);

/* Zeilenumbruch entfernen */

if (mesgptr->mesg_data[n-1]== '\n') n--;
mesgptr->mesg_len = n;

/* Server aktivieren */

my_unlock(server_sem);

/* Client in Warteposition */

my_lock(client_sem);

while ((n = mesgptr->mesg_len) > 0) {
write(1, mesgptr->mesg_data, n);

/* Server aktivieren */

my_unlock(server_sem);

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 37

/* Client in Warteposition */

my_lock(client_sem);
}

}

int main(void) {

/* auf Shared Memory zugreifen */

if ((shm_id = shmget(SHMKEY, sizeof(Mesg), 0)) < 0) {

fprintf(stderr, "Client: kann auf Shared Memory
nicht

 zugreifen\n");
exit(1);

}

/* Shared Memory in den Adressbereich einhängen */

if ((mesgptr = (Mesg *) shmat(shm_id,0,0))== (Mesg *)
–1) {

fprintf(stderr, "Client: Shared Memory kann nicht
in den Adressbereich eingehängt werden\n");
exit(2);

}

/* auf Client- & Server-Semaphoren zugreifen */

if ((client_sem = semget(CLIKEY, 1, 0)) == -1) {

perror("Client: Client-semget fehlgeschlagen");
exit(3);

}

if ((server_sem = semget(SERVKEY, 1, 0)) == -1) {

perror("Client: Server-semget fehlgeschlagen");
exit(4);

}

client();

/* Shared Memory aushängen */

if (shmdt(mesgptr) < 0) {

fprintf(stderr, "Client: Shared Memory kann nicht
 ausgehängt
werden\n");
exit(5);

}

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 38

/* Shared Memory löschen */

if (shmctl(shm_id, IPC_RMID,0) < 0) {

fprintf(stderr, "Client: Shared Memory kann nicht
 gelöscht
werden\n");
exit(6);

}

/* Client-Semaphor löschen */

if (semctl(client_sem,0,IPC_RMID,0) < 0) {

fprintf(stderr, "Client: Client-Semaphor kann
nicht
 gelöscht
werden\n");
exit(7);

}

/* Server-Semaphor löschen */

if (semctl(server_sem,0,IPC_RMID,0) < 0) {

fprintf(stderr, "Client: Server-Semaphor kann
nicht
 gelöscht
werden\n");
exit(8);

}
exit(0);

}

Server:

#include "header.h"

int shm_id, client_sem, server_sem;
Mesg *mesgptr;

/* Union für die Intialisierung des Semaphors */

union semum {

int val; /* Wert für SETVAL */
struct semid_ds *buf; /* Puffer für IPC_STAT, IPC_SET
*/
unsigned short int *array; /* Array für GETALL,
SETALL */
struct seminfo *__buf; /* buffer for IPC_INFO */

} arg;

/* sops-Befehlssätze für den semop-Befehl */

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 39

static struct sembuf op_lock[2] = {

/* 1. Stelle: Nummer des Semaphores
 2. Stelle: Operation auf Semaphor
 3. Stelle: Option für diese Operation */

0,0,0, /* Warten, bis Semaphor=0, also freigegeben */
0,1,0 /* Semaphor auf 1 setzen, also sperren */

};

static struct sembuf op_unlock[1] = {
 0,-1,0 /* Semaphor wieder auf 0 setzen, also
freigeben */
};

int my_lock(int sem) {

/* Zuerst wird der Semaphor mit dem 1. Befehlssatz
aufgerufen:
Warten, bis Semaphor frei ist
Wenn das geschehen ist, wird der Semaphor mit dem 2.
Befehlssatz aufgerufen: Sperren für andere Prozesse
2 Befehlssätze, weil letzte Option bei semop = 2 */

if (semop(sem, &op_lock[0], 2) < 0) {

perror("Server: Semaphor-Lock-Fehler");
return(1);

}
}

int my_unlock(int sem) {

if (semop(sem, &op_unlock[0], 1) < 0) {
perror("Server: Semaphor-Unlock-Fehler");
return(1);

}
}

void server(void) {

int n, filefd;
char errmesg[256];

/* Warten auf die Nachricht (Dateinamen) des Client
*/

my_lock(server_sem);

mesgptr->mesg_data[mesgptr->mesg_len] = '\0';

if ((filefd = open(mesgptr->mesg_data, 0)) < 0) {

/* Fehlermeldung erzeugen */

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 40

sprintf(errmesg, " kann nicht geöffnet
werden\n");
strcat(mesgptr->mesg_data,errmesg);
mesgptr->mesg_len = strlen(mesgptr->mesg_data);

/* Client aktivieren */

my_unlock(client_sem);

/* Server in Warteposition */

my_lock(server_sem);

} else {

/* Dateiinhalt senden */

while ((n=read(filefd, mesgptr->mesg_data,
MAXMESGDATA
 - 1))
> 0)
{

mesgptr->mesg_len = n;

/* Client aktivieren */

my_unlock(client_sem);

/* Server in Warteposition */

my_lock(server_sem);

 }
close(filefd);
if (n<0) fprintf(stderr, "Server: Lesefehler\n");

}

/* Nachricht mit der Länge 0 als Endzeichen */

mesgptr->mesg_len = 0;

/* Client aktivieren */

my_unlock(client_sem);

}

int main(void) {

/* Shared Memory erzeugen */

if ((shm_id = shmget(SHMKEY, sizeof(Mesg),

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 41

 PERMS|IPC_CREAT)) <
0)
{

fprintf(stderr, "Server: Shared Memory kann nicht
 erzeugt
werden\n");
exit(1);

}

/* Shared Memory in den Adressbereich einhängen */

if ((mesgptr = (Mesg *) shmat(shm_id,0,0)) ==(Mesg *)
-1) {

fprintf(stderr, "Server: Shared Memory kann nicht
in
 den Adressbereich eingehängt
werden\n");
exit(2);

}

/* Client- & Server-Semaphoren erzeugen */

if ((client_sem = semget(CLIKEY, 1, 0)) == -1) {

/* Wenn Zugriff auf Semaphor wegen Nichtexistenz
fehlschlägt, wird Semaphor selbst erzeugt */

if ((client_sem = semget(CLIKEY, 1, IPC_CREAT |
 PERMS)) <
0)
{

perror("Server: Client-semget
fehlgeschlagen");
exit(3);

}
}

if ((server_sem = semget(SERVKEY, 1, 0)) == -1) {

/* Wenn Zugriff auf Semaphor wegen Nichtexistenz
fehlschlägt, wird Semaphor selbst erzeugt */

if ((server_sem = semget(SERVKEY, 1, IPC_CREAT |
 PERMS)) <
0) {

perror("Server: Server-semget
fehlgeschlagen");
exit(4);

}
}

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 42

/* Semaphoren initialisieren */

arg.val=0; /* SETVAL auf 0 setzen */
if (semctl(client_sem, 0, SETVAL, arg) == -1) {

perror("Client-Semaphor-Initialisierung

 fehlgeschlagen");
exit(5);

}

arg.val=1; /* SETVAL auf 1 setzen */
if (semctl(server_sem, 0, SETVAL, arg) == -1) {

perror("Server-Semaphor-Initialisierung

 fehlgeschlagen");
exit(6);

}

server();

/* Shared Memory aushängen */

if (shmdt(mesgptr) < 0) {

fprintf(stderr, "Server: Shared Memory kann nicht
 ausgehängt
werden\n");
exit(7);

}
exit(0);

}

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 43

Übung 10:

/* Kalkulationsblatt */

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>

/* nolock =1 zur Simualtion von Fehlern ohne Semaphoren,
sonst noclock = 0 */

int nolock = 0;

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 44

/* Index für Zeilen und Spalten der Summen */

int totalrow, totalcol;

/* Index fr Zeilen und Spalten der Semaphor-Arrays */

int row_semas, col_semas;

/* Makro zum Zugriff der Zelle auf Zeile r und Spalte c
das Kalk.blattes s */

#define CELL(s,r,c) (*((s)+((r)*NCOLS)+(c)))

/* Dimension der Matrix */

#define NROWS 8
#define NCOLS 8

/* Sperren des Semaphors n aus dem Satz sem */

void lock(int sem, int n){

struct sembuf sop;

if (nolock) return;

sop.sem_num = n;
sop.sem_op = -1;
sop.sem_flg = 0;

/* Warten bis Semaphor frei ist */

semop(sem, &sop, 1);

}

/* Freigabe des Semaphors n aus dem Satz sem */

void unlock(int sem, int n){

struct sembuf sop;

if (nolock) return;

sop.sem_num = n;
sop.sem_op = 1;
sop.sem_flg = 0;

/* Semaphor freigeben */

semop(sem, &sop, 1);

}

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 45

/* Anlegen des Semaphor-Satzes mit Schlüssel k mit n
Semaphoren */

int make_semas(key_t k, int n){

int semid, i;

if (nolock) return 0;

/* Ein existierender Semaphor-Satzes mit Schlssel k
wird gelöscht */

if ((semid = semget(k,n,0)) != -1)
semctl(semid,0,IPC_RMID);

if ((semid = semget(k, n, IPC_CREAT | 0600)) != -1){

/* Alle Semaphore freigeben */

for (i = 0; i < n; i++)
 unlock(semid, i);
}
return semid;

}

/* Schlssel für shared memory und Zeilen Semaphor-Array.
Das Spalten-Semaphor-Array hat den Schlssel SHEET_KEY +1
*/

#define SHEET_KEY 1841

/* make_random_entry selektiert zufï¿½lig eine Zelle, fgt
einen zufälligen Wert ein und berechnet die Zeilen- und
Spaltennummern neu. */

void make_random_entry(int *s){

int row, col, old, new;

/* Berechnen der Zellen-Indices und des neuen Wertes
*/

row = rand() % (NROWS-1);
col = rand() % (NCOLS-1);
new = rand() % 100;

/* Sperren der Zeile und Spalte */

lock(row_semas, row);
lock(col_semas, col);

/* Neuen Zellenwert eintragen */

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 46

old = CELL(s, row, col);
CELL(s, row, col) = new;

sleep(1);

/* Neuberechnung der Summen */

CELL(s, row, totalcol) += (new-old);
CELL(s, totalrow, col) += (new-old);

/* Ende des kritischen Bereichs */

unlock(col_semas, col);
unlock(row_semas, row);

}

void print_and_check(int *s){

int row, col, sum, totalbad;

static int scount = 0;

totalbad = 0;
scount++;
for (row = 0; row < NROWS; row++){

sum = 0;

/*Start des kritschen Bereichs*/

lock(row_semas, row);

for (col = 0; col < NCOLS; col++){

if (col != totalcol)
sum += CELL(s, row, col);
printf("%5d", CELL(s, row, col));

}
if (row != totalrow)
 totalbad += (sum != CELL(s, row, totalcol));

/* Ende des kritischen Berichs*/

unlock(row_semas,row);
printf("\n");

}

for (col = 0; col < totalcol; col++){

sum = 0;

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 47

/* Start des kritischen Bereichs */

lock(col_semas,col);

for (row = 0; row < totalrow; row++)
 sum += CELL(s, row, col);
totalbad += (sum != CELL(s, totalrow, col));

/* Ende des kritischen Bereichs */

unlock(col_semas, col);

}

if (totalbad)
 fprintf(stderr, "Kalkulationsblatt %d falsch\n",

 scount);
else
 fprintf(stderr, "Kalkualtionsblatt %d korrekt\n",

 scount);

if ((scount % 100) == 0)
 fprintf(stderr, "Kalkulationsblatt %d
berechnet\n",

 scount);

printf("--
\n");

sleep(1);

}

int main(void){

int id, row, col, *sheet;

setbuf(stdout, NULL);
setbuf(stderr, NULL);

totalrow = NROWS - 1;
totalcol = NCOLS - 1;

id = shmget(SHEET_KEY, NROWS*NCOLS*sizeof(int),
IPC_CREAT
 |
0600);
if (id < 0){

Betriebssysteme Labor – Prof. Kremer – SS05
13.07.05: Musterlösungen Patrick Lipinski

Erstellt für Geschlossene Gesellschaft Seite 48

perror("shmget failed:");
exit(1);

}

sheet = (int *)shmat(id, 0, 0);
if (sheet <= (int *)(0)){

perror("shmat failed:");
exit(2);

}

/* Zellen zu Null setzen */

for (row = 0; row < NROWS; row++)
 for (col = 0; col < NCOLS; col++)
 CELL(sheet, row, col) = 0;

/* Anlegen der Semaphore */

row_semas = make_semas(SHEET_KEY, NROWS);
col_semas = make_semas(SHEET_KEY + 1, NCOLS);

if ((row_semas < 0) || (col_semas < 0)){

perror("shmget failed:");
exit(3);

}

if (fork()){ /* Elterprozess */
 while (1)
 print_and_check(sheet);
}else {/* Kindprozess */
 while (1)
 make_random_entry(sheet);
}

}

